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Bayesian estimation of total fertility from a
population’s age–sex structure
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Abstract: We investigate a modern statistical approach to a classic deterministic demographic
estimation technique. When vital event registration is missing or inadequate, it is possible to
approximate a population’s total fertility rate (TFR) from information about its distribution by age
and sex. For example, if under-five child mortality is low then TFR is often close to seven times the
child/woman ratio (CWR), the number of 0–4 year olds per 15–49-year-old woman. We analyse the
formal relationship between CWR and TFR to identify sources of uncertainty in indirect estimates. We
construct a Bayesian model for the statistical distribution of TFR conditional on the population’s
age–sex structure, in which unknown demographic quantities in the standard approximation are
parameters with prior distributions. We apply the model in two case studies: to a small indigenous
population in the Amazon region of Brazil that has extremely high fertility rates, and to the set of 159
counties in the US state of Georgia. A statistical approach yields important insights into the sources of
error in indirect estimation, and their relative magnitudes.
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1 A statistical approach to deterministic demographic estimators

Statistical analysis is central to demography. Censuses, surveys, vital records and other
sources of demographic information have many imperfections. Understanding and
dealing with the resulting uncertainty often requires probabilistic thinking. There is
sometimes tension, however, between the statistical foundations of demography and
the deterministic nature of many of its methods.

In this article, we demonstrate how re-thinking classic deterministic methods in
explicitly statistical terms can yield useful results. We take apart a simple demographic
approximation formula for the total fertility rate (TFR, the lifetime average number
of children per woman at current age-specific rates). We rebuild the formula with
statistical components, in a Bayesian model with TFR as one of several unknown
parameters. As we demonstrate by example, an explicitly statistical approach yields
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important insights into the sources of error in indirect estimation and their relative
magnitudes.

2 Indirect fertility estimation methods

Indirect methods are an integral part of applied demography. They are used to
estimate demographic parameters for very small populations or in cases of partial,
missing or intentionally masked data (United Nations, 1983; Nolin and Ziker, 2016).
Fertility estimation, in particular, has received a significant amount of historical
attention from demographers (United Nations, 1983; Arriaga et al., 1994; Brass,
1964; Coale and Trussell, 1974).

Indirect fertility estimation procedures that use age–sex counts as basic inputs
are typically regression based. These include the Bogue–Palmore method (Bogue
and Palmore, 1964; Palmore, 1978), the Rele method (Rele, 1967) and others
(Gunasekaran and Palmore, 1984; Hanenberg, 1983). These techniques estimate
TFR from the child–woman ratio (CWR; the number of young children per
reproductive-age woman), from measures of marriage prevalence, from mortality
indices such as life expectancy and from other proximate determinants of fertility
(Bogue and Palmore, 1964).

Regression-based approaches have two main problems. The first relates to
geographical scale: coefficients developed from analyses of national populations have
historically underperformed when applied to sub-national geographies (Brunsdon
et al., 1998; Tuchfeld et al., 1974). The second major problem involves changing
relationships between predictors. Relationships between fertility, marriage, infant
mortality, income, etc. change over time (Hauer et al., 2013), so that coefficients
that initially predict fertility well may eventually have larger errors due to
‘relationship drift’.

Over the second half of the last century, improvements in data quality and
availability gradually made indirect estimation less important. As a result, there has
been little innovation in indirect fertility estimation techniques in the past 30 years.
However, an increasing demand for specialized population estimates (and for small
geographic areas in particular) has revived interest in indirect methods (Schmertmann
et al., 2013). One newly derived method for indirectly estimating total fertility (Hauer
et al., 2013) uses an algebraic rearrangement of the general fertility rate. Called
the ‘implied Total Fertility Rate’ (iTFR), it estimates total fertility from age- and
sex-specific population counts only. The iTFR is a particularly simple and effective
estimator, and we use it as a baseline reference in much of the discussion that follows.

There are many contemporary demographic applications in which complete
fertility data is unavailable or is not disaggregated appropriately for the problem
at hand. In these cases, indirect estimates from the age–sex structure can be very
valuable. Examples include populations without good birth registration systems,
populations for which birth information is collected but masked for privacy reasons
(such as for many small geographic areas in the United States) or cases in which
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vital records do not include information about the mother’s membership in a social
category of interest (such as religion or income quantile).

In this article, we adopt a statistical approach to indirect estimation of total fertility
for cases in which vital records are inadequate, but population counts by age and sex
are reliable. The following sections describe the formal mathematical relationships
between age–sex structure and TFR, embed those relationships in a Bayesian model
with demographic priors, and apply the new model to two very different cases.

3 The formal relationship between total fertility, age–sex structure and
the child/woman ratio

3.1 Derivation

Assume that fertility rates (births/woman-year) are positive over the age interval [15,
50) and zero at all other ages. Define

• Fa = average fertility rate over exact ages [a, a+ 5), which we call ‘age group a’
• TFR = total fertility rate = ∑

a 5Fa, where here and elsewhere summation is over
reproductive ages a ∈ 15,20, . . . ,45

• �a = 5Fa
TFR

= fraction of total fertility occurring in age group a

• La = expected person-years lived in age group a, in a life table with a radix l0 = 1

• s = L0

5
= expected fraction still alive among children born in the past five years

• Wa = the observed number of women in age group a in a census or survey
• W = ∑

a Wa = the total number of women at childbearing ages [15, 50).

Standard approximations used in cohort-component projection methods (e.g.,
Wachter, 2014) imply that the expected number of surviving 0–4-year-old children
of both sexes per woman in age group a = 15,20, . . . ,50 at the end of a five-year
period, which we call Ka, is

Ka =
[
La−5

La
· Fa−5 + Fa

]
L0

2
(3.1)

= TFR · L0

5
· 1

2

(
La−5

La
· �a−5 + �a

)

= TFR · s · pa
The Ka term in (3.1) is unusual because it refers to surviving children per woman in
age group a at the end, rather than the beginning, of a five-year period. The logic
behind the demographic derivation of Ka is otherwise identical to that used to derive
standard Leslie matrix terms. We assume that fertility does not begin until age 15,
which implies that �10 = 0 in the calculation of K15. The expression for K50 includes
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�45 > 0, but in practice, K50 will always be ignorably small and we simply assume
K50 = 0.

The right-hand side of (3.1) decomposes the expected number of children per
woman in age group a into three multiplicative factors. The first two factors, total
fertility and child survival, are identical for all age groups. The third factor pa varies
with age; it is an average of the proportions of total fertility experienced in age groups
a− 5 and a, with a slightly higher weight on the earlier age group to account for the
possible mortality of mothers over the previous five years.

In almost all populations, pa and Ka will near zero for age groups a = 15 and
a = 45, and will reach their highest values for age groups a = 25 and 30. In other
words, typical age patterns of fertility mean that women in their late 20s and early
30s are the most likely to have young children.

The expected total number of surviving 0–4-year-old children in a population with
W15, . . . ,W45 women in childbearing age groups 15–19 through 45–49 is

C =
∑

a

Wa Ka = TFR · s ·
(
∑

a

Wa pa

)

(3.2)

and the CWR is the product of the three terms:

C

W
= TFR · s ·

(
∑

a

Wa

W
pa

)

= TFR · s · p̄. (3.3)

The third term on the right-hand side of (3.3) is a population-weighted average of pa.
p̄ depends on the age pattern of lifetime fertility (�15, . . . , �45), on the current ages of
women in the population of interest (W15, . . . ,W45) and (to a much lesser extent) on
the potential mortality of women in childbearing ages (L10, . . . , L45). It is the average
share of lifetime fertility that women in the population experienced over the past five
years, after a small adjustment for the possible mortality of adult women.

Rearranged as an expression for TFR, (Equation 3.3) becomes

TFR = 1
s

· 1
p̄

· C
W

(3.4)

so that one can calculate TFR as the product of the CWR and two factors: a
child mortality multiplier (1/s) and an age-structure multiplier 1/p̄. If women of
reproductive age are uniformly distributed over seven five-year age groups a =
15, . . . ,45, then p̄ ≈ 1

7 and the age-structure multiplier is ≈ 7. However, from
Equation (3.3) it is clear that p̄ will be higher (and the age-structure multiplier
should be lower) if Wa and pa are positively correlated across ages. In practice,
this implies that we should use a higher age-structure multiplier in the C

W
→ TFR

conversion if there are relatively few women in age groups a = 25 and 30, and a
lower multiplier if there are relatively many. We investigated the likely variation in
this multiplier by calculating 1/p̄ for 2 054 fertility schedules and populations in the
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Human Fertility Database (HFD; Max Planck Institute for Demographic Research
and Vienna Institute of Demography, 2016). Multipliers ranged from 5.88 (Taiwan
1985) to 7.92 (Germany 2005); they were within 5% of 7 (6.65–7.35) in 70% of
populations, and within 10% of 7 (6.30–7.70) in 96% of populations.

The simplest approximation to Equation (3.4) supposes that child mortality is
near zero (s ≈ 1) and that the age distribution of women is uniform across the
reproductive-age groups (p̄ ≈ 1/7). Under those assumptions, TFR ≈ 7 · C

W
. This

approximation is the iTFR measure used by Hauer et al. (2013), who demonstrated
that it has smaller average errors across contemporary national populations than the
regression-based Bogue–Palmore approach (1964). Fifty years ago, Rele (1967), as
cited in Hanenberg (1983), developed a very similar approximation from an empirical
study of simulated stable populations: for low-mortality populations, he proposed the
estimator TFR ≈ 7.14 · C

W
− 0.06.

3.2 Interpretation

Proper interpretation of any TFR estimator derived from CWRs requires under-
standing two fundamental points. First, the measure reflects average fertility over the
period during which the children were born (typically the last five years). Second, a
woman’s demographic category, such as place of residence, marital status or education
level, can change during that period. A TFR estimate from the CWR tells us about
the recent fertility levels of those currently in a given category, which may differ
conceptually from standard measures.

Estimation of TFR from a population’s age–sex structure also depends on accurate
census or survey information. Estimates are vulnerable to undercounts and omissions
(specifically, to differential undercounts of women and children), to age misreporting
and to errors in the reported place of residence or social status. In addition, surviving
children must ‘stay with’ their mothers, in the sense that both must be counted as
parts of the same population. The necessary assumptions for estimating TFR from
age–sex distributions are commonly satisfied, but researchers must be aware of them.

4 A Bayesian model based on the formal relationship

The relationships in Section 3.1 are deterministic. But even with known vital rates
and known numbers of potential mothers, the number of young children (C) is more
appropriately modelled as random, especially in very small populations. In addition,
demographic quantities such as s and p̄ are not truly constants, because fertility age
patterns and mortality schedules are not known with certainty. A Bayesian approach
to modelling the relationship between TFR, C and W = (W15, . . . ,W45)′ addresses
both of these issues.

Figure 1 provides an overview of a Bayesian model for TFR, conditional on C
and W . The model has five fundamental parameters (described broadly here and
in detail in the following subsections). Scalar TFR and ˇ ∈ R

2 determine the level

Statistical Modelling 2018; 19(3): 1–23



6 Carl P Schmertmann and Mathew E Hauer

q5 k  

Mortality 
L0 ,…, L45 

Fertility age pattern

  φ10  φ45   (∑ =1)  

TFR  

Fertility level  

Fertility rates

       F10 ,…,  F45

Expected children/woman  
             K15 ,…, K45  

Resident women  
W15  ,…, W45

β1, β2 

∼  

Children 0 – 4  
Poisson

,…, 

KW a
a

C
a

Figure 1 Graphical summary of the Bayesian model relating children 0–4 and women 15–49. Appendix A
provides a more detailed tabular version

and age pattern of fertility rates, respectively. Scalar parameters q5 and k determine
age-specific mortality. Vital rates, in turn, determine the expected number of surviving
0–4-year-old children per women in each age group in Equation (3.1), and the
expected total number of children in Equation (3.2). The observed number of 0–4 year
olds is randomly distributed as a Poisson variable with a mean equal to the expected
number. We also provide a tabular version of the complete model in Appendix A.

We specify prior distributions that represent existing demographic knowledge
(and uncertainty) about q5, ˇ and k. We then examine P(TFR |C,W ), the posterior
distribution of TFR that arises from the combination of data and priors. This posterior
distribution provides quantitative information about which TFR values are more
and which are less likely, given the observed numbers of children and women in the
population. The following subsections present the model in detail.

4.1 Fertility

4.1.1 Parameters
We separate the schedule of fertility rates for five-year age groups into the level and
shape components, as
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(F10, F15, . . . , F45) = TFR
5

· (0, �15, . . . , �45) (4.1)

where TFR is the total fertility rate and �a is the proportion of total lifetime fertility
that occurs in age group a. We assume that fertility is negligible before age 15
(F10 = 0). The seven proportions �15, . . . , �45 must sum to 1, so we rewrite them
in terms of indices �a = ln( �a

�15
) for a = 15, . . . ,45, such that �a(�) = exp(�a)∑

z exp(�z)
.

Finally, we model the � indices as � = m + Xˇ, where m ∈ R
7 and X ∈ R

7×2

are constants derived from empirical data (described in the following section), and
ˇ ∈ R

2 are the shape parameters. Thus, three fertility parameters (TFR, ˇ1, ˇ2)
yield eight five-year fertility rates (F10, . . . , F45): ˇ → � → �, and TFR

5 · � = F as in
Equation (4.1).

4.1.2 Priors for fertility parameters
We use a proper uniform prior for TFR that includes almost no information:
T ∼ Uniform(0,20). For the shape of the fertility schedule by age, we assign higher
probability to more typical patterns by building the prior for ˇ coefficients from
information in the HFD and in the US Census Bureau’s International Database (IDB;
United States Census Bureau, 2016). In brief, we calculated � indices for a large
number of empirical {Fa} schedules (226 from the IDB, 411 from the HFD), and then
performed a singular-value decomposition on the (de-meaned) 6 × 637 � array. This
produced a model in which each of the 637 columns of � could be well approximated;
the mean vector plus a weighted sum of two principal components � i ≈ m + X ˇi. We
scaled the two columns of X so that ˇi coefficients had zero means, unit variances and
zero covariances over the empirical data i = 1, . . . ,637. These calculations produced
constants m = ( 0 1.39 1.59 1.23 0.45 −0.89 −3.44 )′ and X = (

0 0.27 0.54 0.73 0.88 1.04 1.52
0 0.32 0.51 0.51 0.35 0.05 −0.72

)′,
with which we use the prior

ˇ ∼ N(0, I2) (4.2)

with support restricted to the range [−2,+2] for each ˇ coefficient, in order to better
mimic the HFD distributions. The examination of the X matrix shows that, roughly
speaking, ˇ1 affects the mean age of childbearing and ˇ2 affects the variance. (Higher
ˇ1 means that fertility is postponed, because the constants in the first column of X
are strictly increasing. Higher ˇ2 means that fertility is more concentrated at ages
20–29, because the largest values of constants in the second column of X correspond
to a = 20 and 25.) Figure 2 illustrates a sample of 25 � vectors corresponding to
random draws from this prior distribution for ˇ.

4.2 Mortality

4.2.1 Parameters
We model uncertainty in child and adult mortality with the two-parameter relational
mortality model developed by Wilmoth et al. (2012). In this model, a mortality
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Figure 2 Illustrative �-vectors for proportion of total fertility by five-year age group, based on random
draws from prior distribution ˇ ∼ N(0, I2). Dark line corresponds to ˇ = 0

schedule is indexed by the probability of death before age 5 (q5) and a shape
parameter k with typical values between −2 and +2. The model uses fixed constants{
ax, bx, cx, vx

}
estimated from schedules in the HMD (University of California,

Berkeley (USA) and Max Planck Institute for Demographic Research (Germany),
2016):

ln �x(q5, k) = ax + bx
[
ln q5

]+ cx
[
ln q5

]2 + vx k, x = 0,1,5,10, . . . ,45.
(4.3)

Mortality rates �0 and �1 refer to age intervals [0,1) and [1,5), respectively; all
other rates �x refer to five-year age intervals [x, x+ 5). (Because q5 = 1 − l5 is a
model parameter, there are no

{
a1, b1, c1, v1

}
constants for calculating ln�1. Instead,

�1 = −1
4

[
�0 + ln (1 − q5)

]
.)

We convert the log of mortality rates into life table person-years La for
five-year intervals [a, a+ 5) using standard demographic approximations. Survival
probabilities to exact ages are l0 = 1, l1 = e−�0 , l5 = l1 · e−4�1 and lx = lx−5 · e−5�x−5

for x = 10, . . . ,45. Life table person-years are L0 = 1
2

(
l0 + l1

)+ 4
2

(
l1 + l5

)
and La

= 5
2

(
la + la+5

)
for a = 5, . . . ,45. Thus, two mortality parameters

(
q5, k

)
yield ten La

values (L0, L5, . . . , L45): (q5, k) → ln � → l → L.

4.2.2 Priors for mortality parameters
We assume that there are one or more external estimates of q5, denoted q̂5. We use
the prior

Statistical Modelling 2018; 19(3): 1–23



Bayesian estimation of total fertility from a population’s age–sex structure 9

Figure 3 Illustrative draws from mortality priors when q̂5 = 0.025. Left panel shows calculated La values
for 30 random draws from the joint (q5, k ) distribution. Right panel shows the corresponding child
non-survival probabilities. Dark lines in both panels correspond to (q5, k ) = (0.025, 0). Solid point in the
right panel represents the estimate q̂5 = 0.025 on which the prior for q5 is based

q5 ∼ Beta
[
a(q̂5) , b(q̂5)

]
(4.4)

where a(q̂5) and b(q̂5) are chosen so that P[q5 <
1
2 min(q̂5)] = P[q5 > 2 max(q̂5)]

= 0.05. This conservatively assigns a 90% prior probability that under-five mortality
q5 is between one-half the minimum estimate and twice the maximum estimate.
(If q̂5 is a scalar, then min(q̂5) and max(q̂5) are identical).

For the (much less influential) shape parameter k, we use the prior

k ∼ N(0,1) (4.5)

which centres the distribution on zero and has a low probability of falling out of
the typical [−2,+2] range. We assume that the mortality parameters q5 and k are
independent. Figure 3 illustrates random draws from the joint prior for (q5, k).

4.3 Expected number of surviving children

Specific values of parameters (TFR,ˇ, q5, k) imply specific values Ka in (3.1).
The expected number of surviving children for the Wa women observed in age
group a is WaKa, and the observed number of their surviving children may be
modelled as Ca ∼ Poisson(Wa Ka ). It is reasonable to assume that Ca values are
statistically independent, conditional on fertility and mortality rates, so that their sum
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C = ∑
a Ca is also a Poisson random variable. Thus,

C | TFR,ˇ, q5, k ∼ Poisson

[
∑

a

Wa Ka(TFR,ˇ, q5, k)

]

(4.6)

4.4 Posterior distribution of TFR

For TFR values in the permissible range [0,20], the posterior for parameters
conditional on data is

P( TFR,ˇ, q5, k | C ) ∝ L( C | TFR,ˇ, q5, k) fˇ(ˇ) fq(q5) fk(k) (4.7)

where the likelihood on the right-hand side is the Poisson likelihood in Equation (4.6),
and the f functions represent the prior densities implied by Equations (4.2), (4.4)
and (4.5), respectively. The marginal posterior for TFR, which expresses the relative
probabilities of alternative fertility levels, given the number of children C and the
counts of women W15, . . . ,W45, is

P( TFR | C ) ∝
∫

L( C | TFR,ˇ, q5, k) fˇ(ˇ) fq(q5) fk(k)dˇ dq5 dk (4.8)

In practice, we sample from the full posterior distribution in Equation (4.7)
by applying Markov Chain Monte Carlo (MCMC) methods. Specifically, we
programmed the model in the Stan MCMC language (Carpenter et al., 2017), as
implemented in the rstan package in R (Stan Development Team, 2016; R Core
Team, 2016). We use the empirical density of the sampled TFR values to estimate the
marginal posterior of TFR in Equation (4.8). Experiments reported in Appendix B
show that this posterior distribution is insensitive to the choice of priors about age
patterns of fertility and mortality.

5 Example 1: A small indigenous population in the Brazilian Amazon

In 2010, the Kanamari do Rio Juruá Indigenous Territory in the Brazilian state of
Amazonas (Terras Indı́genas, 2017) had C = 191 resident children under age 5, and
W = (40,34,29,19,14,9,8)′ resident women in five-year age groups 15–19 through
45–49. Note that this population is very small (only 153 women of childbearing age),
and that Kanamari women of childbearing age tend to be young (nearly half are under
age 25). This data comes from geographically detailed population counts available
online from the Brazilian census bureau (Instituto Brasileiro de Geografia e Estatı́stica,
2016); the population counts mentioned earlier are totals for specific census sectors
comprising the Kanamari do Rio Juruá territory.
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The Kanamari CWR was 191/153 = 1.25, so the iTFR estimate is 7 · 191
153

= 8.74.

The iTFR calculation does not account for child mortality, or for the concentration
of 15–49 year-old Kanamari women in the young age groups.

The Kanamari territory covers approximately 6 000 km2 and includes parts of four
different municipalities in the Amazonas state. Estimated q5 for the total populations
(indigenous and non-indigenous) in those municipalities ranges from 23 to 32 per
1 000 (United Nations Development Program, 2013). On the basis of these external
estimates, we use the prior q5 ∼ Beta( 3.99, 114.26 ) so that q5 has a 90% prior
probability of lying in [11.5,64] per 1 000.

MCMC sampling of 2 000 values from the posterior distribution of TFR in
(4.8), conditional on the Kanamari data for (C,W ), produces the data illustrated
in Figure 4. The iTFR = 8.74 estimate is close to the posterior median of 8.49. The
small size of the population, together with uncertainty about the level and pattern of
mortality (especially childhood mortality) and about the age pattern of fertility, imply
considerable uncertainty about the TFR. A posteriori there is a 50% probability that
Kanamari TFR in the five-year period preceding Brazil’s 2010 census was between
7.87 and 9.20 (the interquartile range of the posterior in Figure 4), and an 80%
probability that the TFR was between 7.36 and 9.85 (the interval between the 10th
and 90th percentiles).

Figure 4 Posterior density of TFR for the Kanamari do Rio Juruá IndigenousTerritory. Dashed vertical line
corresponds to iTFR = 7 · C

W
estimate from the child/woman ratio in the territory. Selected percentiles of

the posterior distribution are marked near the horizontal axis

There are several important conclusions from this example. First, the unusual
ratio of young children to reproductive-age women indicates that Kanamari TFR is
extremely high. Second, the combination of a very small population with significant
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uncertainty about important demographic parameters (especially child mortality
levels) means that uncertainty about Kanamari TFR is also very high. Third and most
importantly, a Bayesian approach to estimation automatically generates quantitative
statements about what is and is not known about this population’s fertility level. With
a CWR of 191/153, Kanamari TFR is almost certainly higher than 7 (96% posterior
probability), very likely higher than 8 (70%), possibly higher than 9 (31%), but
almost certainly less than 11 (98%).

6 Example 2: 159 counties in Georgia

As a second example, we consider estimating total fertility from the numbers of
children and women across a large number of related populations. Specifically, we
use 2010 census population counts by sex and age group to estimate TFR for 159
counties in the US state of Georgia. These counties vary significantly in population
size, but all are larger than the indigenous population in the previous example. The
smallest population (Taliaferro County) had 335 resident women 15–49, and eight
counties had fewer than 1 000 women in this age group. The largest county (Fulton,
in the metropolitan Atlanta area) had more than 250 000 women 15–49, and 37
counties had more than 10 000.

The model structure is the same as that illustrated in Figure 1 and described earlier,
with two exceptions. First, we add a hierarchical structure in which county fertility
levels TFR1, . . . ,TFR159 are independent draws from a common distribution with
state-level parameters � and �:

TFRi ∼ N(�, �2) (6.1)

This additional assumption means that we believe a priori that a set of TFR estimates
(TFR1, . . . ,TFR159) is more likely if the 159 values are similar. The practical effect
of the hierarchical assumption is to shrink TFR estimates for counties with very
low populations towards estimates in other counties. In other words, it will allow
small counties like Taliaferro to ‘borrow strength’ from other locations that we
believe—via (6.1)—to be similar. Second, we use distinct mortality priors for each
location. Georgia public health data (https://oasis.state.ga.us) allows the
calculation of county-level q̂5 estimates, which range from a low of 5 per 1 000
(Forsyth County) to a high of 24 per 1 000 (Quitman County). We used these estimates
to construct a separate mortality prior for each county via Equation (4.4).

In the Georgia application, each parameter in Figure 1 becomes 159 separate
parameters, one per county. The complete model therefore has 797 parameters:
�, �, and (TFR, ˇ1, ˇ2, q5, k)i=1,...,159. The data is similarly expanded: (C,W15, . . . ,
W45)i=1,...,159. With the exception of TFR, we assume independence of all
demographic parameters across counties. (We assume prior independence mainly to
simplify exposition. Researchers could easily add spatial or social priors that assert
higher probability for parameter sets in which geographically adjacent or socially
similar areas had similar values).

Statistical Modelling 2018; 19(3): 1–23
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6.1 Results for Georgia counties

We generated posterior draws from the 797-vector of parameters with MCMC
sampling. We then examined the marginal distributions of each of the 159 county
TFR levels. Figure 5 illustrates these marginal distributions in condensed form,
with TFR on the horizontal scale and counties stacked vertically. County TFRs are
centred around a global mean of � = 2.19 (the posterior mean of �). Using posterior
medians (the dots in Figure 5) as point estimates, TFR estimates from CWRs exhibit
a considerable range—from a low of 1.42 at the bottom of Figure 5 (Clarke County,
site of a large state university) to a high of 2.72 at the top (Chattahoochee County, site
of a military base). Most county TFR estimates, however, fall within a fairly narrow
range, with 127 (80%) of the estimates between 1.9 and 2.4.
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W

Figure 6 displays the posterior median TFRs in geographical form. As suggested
by the relatively tight distribution of medians in Figure 5, there are no strong spatial
gradients. However, there are a few clear spatial patterns. Fertility is generally a bit
higher in the southern and southeastern part of the state, where there is a cluster of
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counties with levels such as 2.4, 2.5 or 2.6. The Atlanta metropolitan area in the
north-central region has lower fertility, indicated by a cluster of three counties with
TFR < 2.

Universities

Metro Atlanta

Army
Base

Womens
prison

Figure 6 Map of posterior MedianTFR, Georgia counties 2010

6.2 Analysis of Georgia results

6.2.1 Signal and noise in small-area estimates
Even in a low-mortality environment with moderately large populations, sampling
variability and uncertainty about the age pattern of childbearing sometimes imply
substantial uncertainty in TFR estimates based on CWRs. The widths of the 80%
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credibility intervals in Figure 5 range from 0.04 for Fulton County [1.66, 1.70] to
0.42 for Taliaferro County [2.08, 2.50]. Importantly, differences between county-level
estimates are much smaller than the uncertainty in those estimates. Thus, it would be
very difficult to rank counties accurately by the fertility level.

6.2.2 The importance of age structure
Results from the Bayesian model also demonstrate the quantitative importance of
accounting for age structure when estimating fertility levels from counts of women
and children. From Figure 5, it is clear that iTFR = 7 · C

W
is too low in most counties.

Almost all iTFR estimates are below the Bayesian posterior median, and in many cases
they fall below the 10 percentile of the posterior distribution. These underestimates
occur because women in most counties are not uniformly distributed across age
groups a = 15, . . . ,45. Figure 7 illustrates, showing the fraction of 15–49-year-old
women in each county, who are in the high-K age groups a = 25 and 30 (horizontal
axis) against the C

W
multipliers that would be needed to reproduce the Bayesian

posterior medians.
Concern about TFR estimates from CWRs has centred on bias caused by child

mortality. For example, International Union for the Scientific Study of Population
(2017) prominently warns that the CWR is not an accurate indicator of fertility
because it can have a substantial downward bias when child mortality is high.
Equation (3.4) makes the same point—for example, if 10% of newborns die before
age five (q5 = 0.10) then accurate estimation of TFR requires multiplying C/W
by approximately 7/0.9 = 7.78, rather than 7.00. But q5 = 0.10 is a very high
contemporary mortality rate, seen only in sub-Saharan Africa, Afghanistan and a
handful of other countries. The information in Figure 7 illustrates that the age
structure within the female population is a much more important source of potential
bias when translating C/W → TFR. Furthermore, the age-structure bias can go in
either direction. Using the Bayesian posterior median as a point estimate of TFR,
appropriate C/W multipliers for Georgia counties vary from 5.75 (Chattahoochee)
to 9.50 (Fayette). This range of variation is far wider than that caused by plausible
differences in child mortality, and it is due to county differences in the age distribution
of women within the childbearing ages.

6.2.3 Comparison to vital statistics
Georgia publishes vital statistics reports of birth rates by county and mother’s age
(https://oasis.state.ga.us). This allows the comparison of results from the
Bayesian hierarchical model with published estimates. It is not a comparison with
‘true’ local rates, however, because measured rates in small populations are also
subject to coincidental sampling errors. Nevertheless, it is useful to compare estimates
from the two methods.

Figure 8 shows county-level TFR estimates from vital records over 2006–2010,
and posterior distributions from the Bayesian model based on the 2010 county age
pyramids. The left-hand side of the figure contains data from 110 counties that had
fewer than 15 resident thousand woman of childbearing age; the right-hand panel
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Figure 7 Estimated ratio ofTFR to children per woman, as a function of local age structure, Georgia
counties 2010. Horizontal axis represents fraction of women 25–34 among all women of childbearing age.
Vertical axis represents ratio of posterior medianTFR to the county’s child–woman ratio. A uniform
distribution of women across age groups implies that 2/7 of women are 25–34 and TFR ≈ 7 C

W
. Most

counties have a lower proportion 25–34 and thus TFR > 7 C
W

. Small insets illustrate the local age structure
in the two most extreme counties, Fayette and Chattahoochee

contains data for 37 counties with more than 15 000 resident women in these age
groups. (12 counties were so small that they had missing rates and TFRs even after
accumulating five years of data).

For the small populations, the Bayesian model exhibits a classic shrinkage effect:
counties with low TFR from vital statistics tend to have higher Bayesian estimates, and
vice-versa. This regression-to-the-mean effect is desirable, because sampling errors
affecting TFR are more likely to be negative in counties with low estimates and
positive in counties with high estimates.

In the large populations in the right-hand panel of Figure 8, both vital statistics
and Bayesian TFR estimates have higher precision. Consequently, there is almost no
shrinkage effect from the hierarchical model for the large counties.

There is a clear tendency for Bayesian estimates to be lower than vital statistics
estimates in the large counties. These differences are especially notable in the four
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Figure 8 TFR estimates for Georgia counties from vital statistics (horizontal axis) versus 80% posterior
intervals estimated from age–sex structure (vertical axis). Posterior medians indicated with dots
proportional in size to female population 15–49. Left and right panels contain less and more populous
counties, respectively

most populous counties—Fulton (vital statistics = 1.88, Bayes median = 1.68), DeKalb
(2.05, 1.77), Cobb (2.07, 1.90) and Gwinnett (2.39, 2.14). Possible explanations
for lower TFR estimates from age–sex distributions include (a) errors in census
enumeration, with greater proportional undercount of young children than that of
adult women; (b) fertility-related migration, with women more likely to move from
populous urban counties to suburbs after having children; (c) residency errors in
vital statistics, with non-resident mothers who give birth in large-county hospitals
mistakenly tabulated as residents. These differences are important and require further
investigation, beyond the scope of this article.

7 Discussion and conclusion

Recasting a traditional indirect estimator as a probabilistic model works well.
Statistical modelling of demographic relationships can improve point estimates of
TFR from age- and sex-specific population counts. It can also improve our analytical
understanding of indirect estimators. Even more importantly, a statistical approach
produces estimates of uncertainty about demographic parameters derived by indirect
methods.
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A Bayesian approach like the one we have introduced here is an extensible
framework for modelling the data-generating process. It is a ‘plug-and-play’ system
for statistical analysis. For example, in our application, one could add models and
priors for census errors in the C and W data, for relationships between past and
present fertility levels, for spatial patterns in TFR, for relationships between fertility
and local socioeconomic covariates, and so forth.

Demography is ripe for marriages between analytical and statistical models
for several reasons. First, the formal mathematical foundations of demographic
estimators are well established. Second, recent developments in Bayesian modelling
and software make it feasible to design and estimate fairly complex models
that incorporate realistic demographic relationships. Finally, large, newly available
demographic databases such as the HMD and HFD are invaluable sources of prior
information. Patterns in these databases (and their variations) allow researchers to
design and calibrate useful, informative priors for demographic parameters.

In addition to indirect estimators of total fertility, there are other old demographic
dogs that could learn new statistical tricks. The classic UN Manual X (United
Nations, 1983) includes indirect methods for estimating child mortality from survey
information on the survival of children by mother’s age, for correcting fertility
estimates using mothers’ reports about the number of children ever born, and so
on. All of these methods could potentially be revived as Bayesian models and used in
new applications, following the example in this article.

Appendix

A Tabularsummary of model and priors

The following table corresponds to Figure 1, providing a list of model parameters
and relationships.

B Sensitivity to priors

Abbreviating the vector of all relevant parameters other than TFR as �, Equation (4.8)
becomes

P(TFR|C) ∝
∫

L(C|TFR, �) f (�)d�

For the prior f (�) that we propose in this article, fertility proportions �a come from
log ratios � = m+Xˇ, and the mortality schedule La comes from the the Wilmoth
et al. (2012) model, as described in Section 4.2.1.
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Category Type Distribution or Demographic Relation

Fertility Parameter TFR ∼ Uniform(0, 20)
Parameters ˇ ∼ N(0, I2)

Relation � = m + Xˇ ∈ R7

Relation �a = exp(�a )∑
a exp(�a)

, a = 15, 20, . . . , 45

Relation Fa = 1
5 �aTFR , a = 15, 20, . . . , 45

Mortality Parameter
q5 ∼ Beta

P (q5 < 1/2 min q̂5) = .05
P (q5 < 2 max q̂5) = .95

Parameter k ∼ N(0, 1)

Relation ln �x = ax + bx ln q5 + cx (ln q5)2 + vx k, x = 0, 1, 5, , . . . , 45
Relation La = La(�) , a = 0, . . . , 45

Children 0–4 Relation Ka = TFR · L0
5 · 1

2

(
La−5
La

�a−5 + �a

)

Likelihood C ∼ Poisson
(∑

a WaKa

)

For any prior f (�), we can approximate the posterior of TFR empirically from a
sample of parameter vectors �∗

1, . . . , �
∗
S drawn from f (�), as

P(TFR|C) ≈ 1
S

∑

s

L(C|TFR, �∗
s )

This emphasizes that the posterior distribution is a formal means of averaging over
unknown demographic quantities � to decide which TFR values are more and less
likely.

In the experiments in this appendix, we define a fine grid of possible TFR values
v1, . . . , vN, sample �∗

1, . . . , �
∗
S from alternative prior distributions f (�), calculate Pis =

L(C|TFR = vi, � = �∗
s ) and then approximate the posterior of TFR up to a scalar

multiple as

P(TFR = vi |C) ∝
∑

s

Pis (B.1)

The key question is whether this posterior distribution is sensitive to the choice of
priors f (�). In order to investigate, we considered two alternative pairs of fertility and
mortality models.

Alternative Prior 1: Empirical For the first alternative prior, which we call Empirical,
we use �15, . . . , �45 and L0, . . . , L45 schedules drawn randomly from the HFD and
HMD, respectively. The HFD has 2 054 complete age patterns, and in the Empirical
prior, we assume that each of these patterns is equally likely. Thus for each simulation
s = 1, . . . , S we draw one � schedule at random from the HFD, with each schedule
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having a probability 1/2 054. The HMD has 921 complete La schedules. In the
Empirical prior, we draw one of these schedules for each simulation, with higher
probabilities of selection for schedules that better match the q̂5 estimates for the
population. (Specifically, the selection probability for schedule i is proportional to
the q5 ∼ Beta density described in Equation (4.4)).

Alternative Prior 2: IDBHIV For the second alternative prior, which we call
IDBHIV, we consider much wider possible variations in fertility and mortality
patterns, and we derive these patterns from alternative sources. We draw
fertility schedules randomly from a Dirichlet distribution � ∼ Dirichlet( ),
where parameters  = ( 4.7 14.3 17.7 13.5 7.1 2.7 0.7 )′ were fit by maximum likelihood to
226 schedules in the US Census Bureau’s IDB (these schedules are available online
at http://schmert.net/calibrated-spline/data/IDB 5fx.csv). IDB
schedules span a much wider variety of shapes than those in the HFD, because
they include many African, Asian, and Latin American countries. For the mortality
patterns in the IDBHIV prior, we consider possible effects of HIV prevalance on the
age pyramid and the CWR. For each simulation s = 1, . . . , S, we draw a q5 value from
the q5 ∼ Beta[a(q̂5), b(q̂5)] distribution, and then use the mortmod.5q0 function in R
package HIV. LifeTables (Sharrow, 2013) to calculate the corresponding L0, . . . , L45
values in a population with a 10% adult HIV prevalence rate. In general, these
mortality patterns imply higher ratios of surviving children to surviving mothers at
any given level of TFR, thus raising the posterior probabilities of lower levels of TFR
conditional on an observed CWR. The main question for the IDBHIV posterior is
whether this effect would be large in a population with a high prevalence of HIV
and a higher mortality of adult women.

Comparative Results: Posterior distributions are not sensitive to priors For each of
the 159 counties in Georgia, and for the Kanamari indigenous territory, we drew
S = 1 000 fertility and mortality schedules for each of the three sets of priors: the
priors proposed in the text, the Empirical priors, and the IDBHIV priors. We then
calculated the implied posterior distribution of TFR for each population via equation
(B.1).

Figure 9 illustrates the results of the sensitivity experiments for the 159 Georgia
counties. (Results for the Kanamari indigenous population were extremely similar,
but we omit them in order to provide a narrower scale and thus more detail in the
figure.) The six panels in Figure 9 correspond to two alternative priors (Empirical
priors for the top three panels, IDBHIV priors for the bottom three panels), and three
quantiles of the posterior distribution (from left to right: 10, 50, and 90 percentiles).
Within each panel the horizontal axis represents the posterior quantile when using
the prior that we propose in the text, and the vertical axis represents the posterior
quantile under one of the alternative priors. Each county in Georgia contributes one
point in each panel.

For example, the top-right point in all six panels is for Chattahoochee County.
The 10th percentile of the posterior distribution for TFR in this county is 2.72 with
our proposed priors, 2.69 with Empirical priors, and 2.73 with IDBHIV priors. Thus
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Figure 9 Marginal posterior quantiles of TFR under alternative priors for age patterns of fertility and
mortality. Horizontal axis of each panel corresponds to the priors proposed in the main text of this article.
Vertical axes correspond to quantiles for the alternative priors described in this appendix

the top-left panel contains the point (2.72, 2.69), and the bottom-left panel contains
(2.72, 2.73). All other points in Figure 9 are analogous.

All points in Figure 9 lie close to the 45◦ line, which means that posterior medians
and 80% intervals are very similar under all three priors. Elevated adult mortality,
as in populations with HIV prevalence in the bottom panels, tends to shift posterior
TFR distributions towards lower values. This effect is very slight, however.

Our strong conclusion from this exercise is that the posterior for TFR is not
sensitive to the choice of priors. Bayesian TFR estimates are driven mainly by variation
in the age–sex distribution, and are similar under many plausible distributions of
fertility and mortality age patterns.
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