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A B S T R A C T

Rising seas will impact millions of coastal residents in coming decades. The vulnerability of coastal populations
exposed to inundation will be greater for some sub-populations due to differences in their socio-demographic
characteristics. Many climate risk and vulnerability assessments, however, model current populations against
future environments. We advance sea-level rise risk assessments by dynamically modeling environmental change
and socio-demographic change. We project three scenarios of inundation exposure due to future sea-level rise in
coastal Georgia from 2010 to 2050. We align the sea-level rise projections with five population projection
scenarios of socially vulnerable sub-populations via the Hamilton-Perry method and the theory of demographic
metabolism. Our combined fast sea-level rise and middle population scenarios project a near doubling of the
population exposed, and a more than five-fold increase for those at risk (i.e., residing in a census tract with high
social vulnerability) and most at risk (i.e., high social vulnerability and high exposure) compared to the same
estimate based on 2010 population data. Of vulnerable sub-populations, women had the largest absolute in-
crease in exposure for all scenario combinations. The Hispanic/Latinx population's exposure increased the lar-
gest proportionally under the fast and medium sea-level rise projections and elderly people's (65+) under the
slow sea-level rise scenario. Our findings suggest that for coastal areas experiencing rapid growth (or declines) in
more socially vulnerable sub-populations, estimates based on current population data are likely to underestimate
(or overestimate) the proportion of such groups' risk to inundation from future sea-level rise.

1. Introduction

Global mean sea level is forecast to rise by as much as 2 m or more
this century (DeConto & Pollard, 2016; Kopp et al., 2017, 2014; Sweet
et al., 2017; Vermeer & Rahmstorf, 2009). By 2060, as much as 12% of
the global population—1.4 billion people—could live in the low ele-
vation coastal zone, many with the sustainability of their livelihoods
linked to coastal environments (Neumann, Vafeidis, Zimmermann, &
Nicholls, 2015). Under equal exposure to climate change hazards,
however, the vulnerability of some coastal sub-populations will be
much greater due to differences in their socio-economic characteristics
(Gaillard et al., 2014; Jurgilevich, Räsänen, Groundstroem, & Juhola,
2017; Lutz and Muttarak 2017; Otto et al., 2017; Shepherd and KC
2015). Numerous case studies support the connections between in-
creased vulnerability to environmental hazards and multiple socio-
economic characteristics including non-white racial and non-Hispanic
ethnic groups, women, people with low educational attainment or
living in poverty, and both the young and elderly, as well as many other
socio-economic factors (Bullard 1990; Bolin, Jackson, and Crist 1998;
Ngo, 2001; Wisner, Blaikie, Cannon, & Davis, 2004; Bolin, 2007;
Neumayer and Plümper 2007; Wailoo, 2010; Rufat, Tate, Burton, &

Maroof, 2015; Shepherd and KC 2015). This suggests that assessing the
risk of the most vulnerable coastal populations to inundation exposure
from sea-level rise is increasingly important for improving coastal
adaptation planning and policies. In this article, we define risk as a
function of vulnerability, exposure, and hazard (see Jurgilevich et al.,
2017).

Many climate risk and vulnerability assessments, however, model
current populations against future environments (e.g., Emrich & Cutter,
2011; Frazier, Wood, Yarnal, & Bauer, 2010; Kopp et al., 2017; Kulp
and Strauss 2017; Martinich, Neumann, Ludwig, & Jantarasami, 2013;
Shepherd and Binita 2015; Spanger-Siegfried et al., 2017). This ap-
proach renders methods for assessing future climate risk as both static
(population) and dynamic (environmental change). Only recently have
studies of sea-level rise impacts started accounting for population
change simultaneously with the associated environmental change ex-
pected from inundation (Neumann et al., 2015; Hauer, Evans, and
Mishra 2016; Hauer 2017). These studies are limited to exposure as-
sessments, however, quantifying the total future population expected to
be impacted by sea-level rise inundation. They do not account for who
that coastal population will be, in other words, its socio-demographic
characteristics. Previous studies have compared future inundation
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exposure against either 1) current socially vulnerable populations, or 2)
undifferentiated totals of future populations. Few, if any, have com-
pared future inundation exposure against future projections of socially
vulnerable sub-populations. Many of the previous studies have shown
that a substantial portion of current coastal populations in the United
States have sub-populations with increased levels of social vulner-
ability. Given this and the well-documented historical growth in US
coastal populations (Crossett et al., 2013; Culliton et al., 2010) and its
projected future growth (Hauer et al., 2016), such a temporal mis-
alignment of comparing current social vulnerability against future in-
undation exposure will likely lead to incorrect estimates of the future
risk of coastal populations.

The temporal misalignment in previous studies is due to limited
methodological approaches for analyzing gradual environmental
change in concert with multi-decadal socio-demographic change
(Jurgilevich et al., 2017). Recent theoretical developments in demo-
graphy, however, offer an approach for overcoming this shortcoming
through a multi-dimensional predictive model of socio-demographic
change called demographic metabolism (Lutz, 2013; Lutz and Muttarak
2017). Specifically designed for climate change research, demographic
metabolism is a theoretical framework that argues that “the process of
social change can be analytically captured through the process of
younger cohorts replacing older ones” (Lutz, 2013, p. 284). The cohort
aged 15–19 in 2015 becomes the 20–24 cohort in 2020 after adjusting
for the components of population change: births, deaths, and migration.
This approach creates reliable socio-demographic forecasts over dec-
adal time scales for two key reasons: 1) many socio-demographic
characteristics are either established at a young age (e.g., the propor-
tion of people with a high school education aged 25–29 in 2015 is a
good predictor of those aged 60–64 with a high school education in
2050) (Lutz and KC 2011), and 2) socio-demographic change is em-
bedded within the age structure (e.g., life course analysis shows that
earnings steadily increase after age 18, peaking around age 65, before
declining through retirement) (Tamborini, Kim, and Sakamoto 2015).

In this article, we advance sea-level rise risk assessments by dyna-
mically modeling environmental change and socio-demographic change
of coastal populations. Specifically, we forecast inundation exposure
due to future sea-level rise along with projections of the socio-demo-
graphic indicators of social vulnerability for populations in coastal
Georgia. Given the high projections of US coastal population growth
(Hauer et al., 2016), we examine the potential underestimation of
previous estimates of social vulnerability to sea-level rise. We assess the
total and proportional change in vulnerable sub-populations at risk to
inundation by comparing estimates based on 2010 and 2050 population
data. Our analysis allows us to capture the dynamic spatio-temporal
relationship between shifts in socio-demographic indicators driving
social vulnerability and increasing levels of inundation exposure from
future sea-level rise.

2. Methods

2.1. Study area

We selected coastal Georgia in the United States as our study area
given its rural-to-urban settings and diverse demographics including
relatively high numbers of people with the characteristics that are in-
dicated to increase social vulnerability (Fig. 1) (Cutter, Boruff, and
Shirley 2003; Wisner et al., 2004). Of the greater than 500,000 people
residing in the six coastal county region, roughly 227,000 (44%) are
racial and/or ethnic minorities, approximately 87,000 (18%) are living
in poverty, and over 38,000 (11%) of those 25 years and older have less
than a high school equivalent educational attainment level (US Census
2012). Coastal Georgia's current population that could be exposed to
inundation from sea-level rise of 0.9–1.8 m by the year 2100 is esti-
mated to be between approximately 51,000 and 96,000, respectively
(Hauer et al., 2016). The exposed population is expected to nearly

double when accounting for Georgia's population growth to between
approximately 93,000 and 179,000 people by the year 2100 (Hauer
et al., 2016). Studies based on 2010 US Census population data estimate
that there are approximately 5000 Georgia residents with high social
vulnerability living within 0.9 m of the high tide line (Strauss et al.,
2014). Taking into account the significant population growth projected
for the region, however, it is likely that the socially vulnerable popu-
lation of the future will be much greater. Moreover, being able to
identify and quantify whom those socially vulnerable populations will
be is of critical importance for targeting adaptation planning and po-
licies at vulnerable sub-populations.

2.2. Population projections

One of the most well-accepted approaches for projecting popula-
tions is the cohort-component method, which uses migration, birth, and
death rates to forecast population changes within an area (Smith,
Tayman, & Swanson, 2001). Given the difficulty of obtaining these data
for some areas and smaller geographies such as US Census tracts, a
simpler approach was proposed, known as the Hamilton-Perry method,
which uses cohort-change ratios (CCR) between the two most recent
census counts to project populations by age and sex, and sometimes
race or ethnicity (Hamilton & Perry, 1962; Swanson, Schlottmann, &
Schmidt, 2010). Using the Hamilton-Perry method based on 2000–2010
US Census data and a series of controlling factors and limits, we pro-
jected populations by age, sex, race, and ethnicity in 10-year cohorts
from 2010 to 2050 at both the county (n = 6) and census tract levels
(n = 121) for the Georgia coast following:

= +P

P
CCR ,n x

n x y l

n x b

,

, (1)

where n is the cohort interval, x is the starting age of the cohort, nPx+y,l

is the population aged x + y to x + y + n in the most recent census (l),
nPx,b is the population aged x to x + n in the second most recent census
(b), and y is the number of years between the two censuses (l – b) ac-
cording to Smith et al. (2001).

Given the 10-year interval of most US Census data, the age cohort of
10–19 is the minimum for applying the CCR. Child-woman ratios
(CWR) are used to project populations of the 0–9 age cohort. We made
two adjustments to Smith et al.’s (2001) recommendation for assessing
CWRs. First, we used 10-year age cohorts instead of five-year age co-
horts because our projection interval was 10 years. Second, we assessed
the combined CWR for the population of male and female children due
to low counts for some groups. We calculated CWRs for the launch
year's population by calculating the ratio of children aged 0–9 to
women aged 15–49 following:

− =P
P
P

Children aged 0 9: ,t
l

l
10 0,

10 0,

35 15, (2)

We divided this combined CWR by two before calculating the pro-
jected target population of male and female children, which assumes an
equal birth rate for the sexes. As we projected in 10-year age cohorts
over 10-year periods, we used half of the 10–19 aged female population
count to ascertain the number of women 15–19 to be included in the
35-year window in equation Eq. (2).

Two challenges emerge when projecting populations for sub-county
geographies such as census tracts (Swanson et al., 2010). A common
challenge is the frequent changes that occur with boundaries between
census collection years. To overcome this first challenge, we applied the
Longitudinal Tract Database's conversion tool (Logan, Xu, and Stults
2014) to each 2000 census tract data table to normalize the data to
2010 census tract boundaries. Another common challenge is specific to
the Hamilton-Perry method, which can lead to forecast errors and up-
ward bias in rapidly growing areas (Smith et al., 2001). This is due to
small populations, particularly those that result in small denominators
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in the CCR calculation. For example, a cohort (e.g., Asian women
10–19) with a tract population of 10 for the base year and 100 for the
launch year will have a CCR of 10, leading to a population of one
million after only four projection periods. This is less of an issue with
larger geographies like counties, but can significantly affect results for
smaller geographies such as tracts. Consequently, projections must be
controlled to independent projections or projections for larger geo-
graphies, such as counties, to overcome these errors (Swanson et al.,
2010; Baker, Swanson, Tayman, & Tedrow, 2017). The county level
projections served as our top-down projections for controlling of the
tract level projections.

2.2.1. County level projections
We first projected age-sex cohort populations at the county scale

using CCR and CWR as described in Eq. (1) and Eq. (2). We then pro-
jected age-sex-race-ethnicity (ASRE) cohort populations at the county
scale using CCR and CWR, but also applied a single-dimensional raking
to control projections for county ASRE cohorts to our county age-sex
cohort projections. This ensures that the sum of demographic sub-po-
pulations for the ASRE projections equal the independent age-sex pro-
jections within counties. Before applying the single-dimensional raking
procedure, we adjusted our uncontrolled projection's CCR for the His-
panic/Latinx population by dividing it by two. This concurs with US
Census estimates for a significantly slowed growth rate for this sub-
population over our projection period when compared to the 2000 to
2010 rates (Colby & Ortman, 2015).

2.2.2. Tract level projections
For our initial projections of ASRE cohorts in tract populations, we

used the Hamilton-Perry method as above, but we applied four controls
to our projections. First, we limited the rate of population change for
ASRE cohorts by applying the controlled ASRE county projection's race/
ethnicity specific CCR. This was necessary to limit some otherwise ra-
pidly growing or declining cohorts in some tracts with unusually high
CCRs (e.g., over 200). Second, to determine the target year's 0–9 age
cohort, we did not use CWRs, but instead controlled this group using
implied total fertility rates (iTFR) (Hauer, Baker, and Brown 2013) for
race/ethnicity specific groups from the controlled county projections,
following:

= ⎡
⎣⎢

⎤
⎦⎥

P
iTFR W

n
10* 

 *  
,n x

10 0 (3)

where subscripts are equal to those in Eq. (2) and nWx equals the total
number of women aged x to x + n. As with the CWR, we assumed an
equal birth rate of both sexes. Third, to limit overly rapid tract popu-
lation growth or decline we set an annual growth rate ceiling at 1.05
and a floor at 0.98 for all tract projections, which is the same as those
set in a previous study that applied the Hamilton-Perry method to sub-
county geographies (Swanson et al., 2010). This is especially useful in
areas that experienced rapid rates of change between 2000 and 2010
that would be unsustainable over a forty-year period due to build out
limitations. Lastly, we used a single-raking procedure (Smith et al.,
2001) to adjust all tract population projections to county level ASRE
counts to ensure tract level projections summed to county level pro-
jections.

2.2.3. Low education and poverty projections
To project low educational attainment and poverty, we used

2008–2012 American Community Survey (ACS) US Census data. For
low education, ACS Census data are reported as age-sex cohorts of
18–24, 25–34, 45–64, and 65 and above, however, we only assessed
low education in populations 25 years and older. Due to our projections
being in 10-year cohorts starting with 0–9, we applied a proportional
adjustment to our projected population estimate by assuming an equal
yearly age distribution among the population for each 10-year age-sex
cohort. For example, to calculate the number of women with low
education aged 25–34, we divided each of our projected estimates for
women aged 20–29 and 30–39 in half and summed the estimated 25–29
and 30–34 counts. To determine the proportion of the future sex-spe-
cific population aged 25 and above with low education, we assumed
constant enrollment rates and projected the known rates forward. In
other words, we assumed that the low education rates for the tract level
age-sex cohorts of 25–34 were frozen at the percentages reported in the
2008–2012 ACS data. For example, the female population aged 25–34
in 2010 would be the female population aged 65–74 population in
2050. By assuming constant enrollment rates, we applied the percen-
tage of the population aged 25–34 in 2010 to each new population that
entered this specific age-sex cohort during our projections.

For projecting the population of men and women in poverty, we
assumed the age-structure of poverty stayed the same over our

Fig. 1. Study site of coastal Georgia. Racial diversity by county and
population density for US Census block groups (US Census, 2012).
Stacked bars show the current proportion of racial diversity in each
county. Block group outlines are not shown for clarity. Dots are
restricted to land only.
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projection window. For example, if 10% of the population aged 20–29
was in poverty in 2010, then we applied an in poverty rate of 10% to
the population aged 20–29 in all subsequent decades. In other words,
we assumed that people moved in and out of poverty as they moved
into and out of 10-year age-sex cohorts. This aligns with life course
analysis that shows people gain income after age 18 and peak around
age 65 before starting to decline again (Tamborini, Kim, and Sakamoto
2015). We acknowledge the uncertainty inherent in ACS data
(Spielman, Folch, and Nagle 2014), but contend that our analysis may
underestimate poverty rates (Bazuin and Fraser 2013). Our assumption
of constant enrollment rates, which assumes “stalled development” is
likely an overestimate of the proportion of the future population with
low educational attainment (Samir and Lutz 2014), however, projecting
multiple scenarios of future educational attainment was beyond the
scope of this study.

2.2.4. Population scenarios
The Hamilton-Perry method is a deterministic approach that as-

sumes that the rate of cohort change over two periods (from 2000 to
2010, in our case) stays constant as the population is projected forward
into the future. We developed a suite of scenarios, however, that cap-
ture the potential for growth or decline in the total population by
varying the rate of change for cohorts. We modeled high and low sce-
narios of± 5% and intermediate high and low scenarios of± 1% for
our county level age-sex cohort projections, respectively. For example,
if the 20–29 female cohort had a 2000 to 2010 CCR of 1.1 (i.e., 10%
change over the 10-year period), our high projection scenario would
assume a cumulative rate of growth for this cohort of 5% each period.
For the 2020 projection under the high scenario, in other words, we
would have multiplied the 2010 population by a CCR of 1.15 for this
age-sex cohort. We applied the independent, county level projections as
controls for our ASRE county and tract level projections following the
approach outlined above.

Our scenario approach assumes a homogenous rate of growth or
decline for all cohorts. It does not account for the possibility of some
sub-populations to grow at faster rates than others grow (other than
that rate which is already accounted for in the non-adjusted CCR). The
relative rates of growth among sub-populations, for example, is not
altered by our scenarios. In other words, all cohorts' change ratios are
either increased or decreased equally. Future iterations of our technique
could apply alternative scenarios for specific sub-populations. Such
scenario building, however, would require more significant input from
local planners and/or expert scenario building based on specific sub-
populations' rates of migration, births, and deaths, as well as changes in
other factors such as economic opportunities, real estate markets, and
migration patterns.

2.3. Social vulnerability

There are myriad definitions, frameworks, and models for social
vulnerability (Preston, Yuen, and Westaway 2011; see reviews
McDowell, Ford, and Jones 2016; Wisner, 2016, pp. 1–52). We take two
approaches here, an individual indicator approach and an aggregate-
based index approach. For the former, we quantify the number of
people in vulnerable sub-populations who are at risk to inundation
exposure including racial and ethnic minorities, elderly, women, people
in poverty, and people with low educational attainment. We assess
absolute and relative change for these sub-populations' risk between
2010 and 2050. For the latter, we use a modified version of the Social
Vulnerability Index (SoVI) applied by Emrich and Cutter (2011), but
within the conceptual framework of Jurgilevich et al. (2017) where:

= fRisk (Vulnerability, Hazard, Exposure) (4)

In this risk framework, vulnerability is always in the social domain
and is driven by the socio-economic conditions that affect a sub-po-
pulation's potential for harm when physically exposed to an

environmental hazard or, in the case of this study, the impacts asso-
ciated with the gradual environmental change expected from inunda-
tion due to future sea-level rise.

We conducted a SoVI-based approach using US Census tracts
(n = 121) in the six county region of coastal Georgia for the years 2010
and 2050, but with a few modifications. The SoVI model has undergone
a series of updates since its first iteration including 42 variables, then
32, and now the latest version applies 27 variables; these changes have
been linked to available data limitations as well as shifts in theoretical
understanding of the primary drivers of social vulnerability (Cutter &
Morath, 2014). Due to the challenges associated with projecting many
of these variables, however, we were limited to only nine of the vari-
ables from the latest version in our analysis. Our modeled socio-de-
mographic characteristics that indicate increased levels of social vul-
nerability include race (specifically Asian, Black, and a non-white/non-
Hispanic category we defined as “All Other Races” collected in the 2010
US Census), ethnicity (Hispanic/Latinx), age dependence (≥65 or< 5),
sex (specifically women), living in poverty, and low education as less
than a 12th grade educational attainment level.

The process of implementing SoVI is explained in detail by Dunning
and Durden (2011). First, the SoVI model requires that census variables
are standardized with z-scores. Second, a Principal Components Ana-
lysis (PCA) is conducted on the variables' z-scores using varimax rota-
tion and the Kaiser criterion for component selection (i.e., eigenva-
lues> 1). Third, the components of the PCA are then interpreted,
named, and given a cardinality in relation to their theoretically un-
derstood influence on social vulnerability. Fourth, all component scores
are summed by the unit of analysis to determine a unit's score. Fifth,
scores are then mapped as quantiles to show relative levels of social
vulnerability for the study area. The SoVI model assumes a theoretical
link of explanatory power exists between the variance in socio-eco-
nomic indicators and relative social vulnerability of an area. Although
this connection is theoretical and difficult to empirically measure across
broad geographic regions, we selected the SoVI model for this study due
to its popularity in governmental planning (Cutter, Emrich, Morath, &
Dunning, 2013; Dunning & Durden, 2011, 2013; see; Evans, Pippin,
Hardy, & Hauer, 2014) and because it has been tested for robustness
and replicability (Cutter & Morath, 2014; Schmidtlein, Deutsch,
Piegorsch, & Cutter, 2008; Tate 2012, 2013).

We ranked social vulnerability of US Census tracts into a three-
tiered classification system of limited, moderate, and elevated levels
based on standard deviations of SoVI scores following a previous ap-
proach (Emrich & Cutter, 2011). We classified social vulnerability of
census tracts that scored less than half a standard deviation below the
mean score as limited, those within half a standard deviation of the
mean as moderate, and those with more than half a standard deviation
above the mean score as elevated. We recognize the sensitivity of model
results to variable selection (Jones & Andrey, 2007), yet we contend
that these variables capture many of the characteristics that are likely to
affect Georgia's coastal population under rising seas and maintain that
our results are usable in coastal adaptation planning and policies.

2.4. Inundation modeling

To model inundation exposure on dryland, we used continuous
elevation data based on high resolution Light Detection and Ranging
(LiDAR) point data (10 cm RMSEz vertical accuracy). We tidally-ad-
justed the elevation data to the local mean higher high water (MHHW)
datum with data available from the National Oceanic and Atmospheric
Administration (NOAA OCM, 2015; Strauss, Ziemlinski, Weiss, &
Overpeck, 2012). Following a similar approach to Strauss et al. (2014),
we employed a conservative three-fold approach to create a land/ocean
layer. First, the area had to be above the MHHW mark in the elevation
data to be considered land. Second, we marked all areas indicated as
marine habitat in the US National Wetlands Inventory as ocean. Third,
to ensure hydrologic connectivity between low-lying areas that are
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often overlooked in such assessments due to buried culverts not cap-
tured in elevation data, we classified streams and canals from the USGS
National Hydrography Dataset high-resolution data as “ocean.” To en-
sure connectivity to the shoreline, we only included areas that are
connected to the National Shoreline (NOAA OCM 2016).

2.5. Risk to sea-level rise

By mid-century, Strauss et al. (2014) estimate a range of
0.09–0.55 m of sea-level rise above the 2012 level for the Georgia coast,
which is based on locally-adapted scenarios of the Third National Cli-
mate Assessment's intermediate low, intermediate high, and high sce-
narios (Parris et al., 2012). We followed Strauss et al.’s (2014) approach
and modeled the same locally-adjusted, mean curves with the inter-
mediate low (globally 0.5 m by 2100) and high (globally 2.0 m by
2100) estimates—what we call slow and fast scenarios for simplici-
ty—to assess sea-level rise inundation for the year 2050. As our mod-
erate scenario, we applied a locally-adjusted estimate for future global
mean sea-level rise that is based on a semi-empirical model of sea-level
rise (Vermeer & Rahmstorf, 2009) informed by comprehensively mod-
eled greenhouse gas emissions' effect on global warming (Ward and
Mahowald 2014) under the Intergovernmental Panel on Climate
Change high emissions scenario (see Hardy & Nuse, 2016). To rank
relative exposure, we applied the same three-tier classification system
as for the SoVI results, but to the percentage area inundated for each
tract.

We assessed relative levels of inundation exposure, social vulner-
ability, and risk (as a function of exposure and vulnerability) for tracts
in Georgia's six coastal counties at the year 2050 using the slow,
moderate, and fast sea-level rise scenarios. We assumed the populations
and sub-populations within each tract were evenly distributed. The
proportion of the tract land exposed to inundation was used to de-
termine the proportion of its total population affected. This meant
multiplying the projected population density (assessed based on avail-
able land) by the area forecast to be inundated under each sea-level rise
scenario as done in other studies (Hauer et al., 2016). We only eval-
uated aggregate social vulnerability (SoVI) for our middle population
scenario. We applied this same approach for our individual indicator
risk assessment.

A note on terminology for our population assessment. We use “ex-
posed” to indicate the total population that is projected to experience
inundation impacts due to sea-level rise independent of vulnerability
status. This is the approach of previous studies (Hauer, Evans, and
Alexander 2015; Hauer et al., 2016). We use “at risk” to refer to the
proportion of population affected in tracts with both elevated social
vulnerability and any exposure to inundation from rising seas. We apply
“most at risk” to refer to the proportion of the population in tracts with
elevated levels of both social vulnerability and inundation exposure
following a three-tiered bivariate comparison similar to previously
published research (Emrich & Cutter, 2011). For the individual in-
dicator risk assessment, we assess the proportion of each sub-popula-
tion that is exposed and define these populations as “at risk,” although
separately from the previous classifications.

3. Results and discussion

3.1. Future population

Our population scenarios project Georgia's coastal population to
range from approximately 439,000 to 1.27 million with a middle pro-
jection of 803,000 by the year 2050 (Fig. 2).1 Under all scenarios, this
region becomes a majority non-white population by 2050 with slightly

higher rates of poverty and lower rates of low educational attainment
(Fig. 3; see Figure S1 for percentages and Figures S2-S5 for results of
other population projection scenarios). Compared with the U.S. Cen-
sus's 2008–2012 American Community Survey estimates, the percen-
tages of coastal Georgia's population aged 25 and above with low
educational attainment declines over the projection period from 12.0%
in 2010 to 10.3% in 2020 followed by a slow increase to 10.5% by
2050. The total population with low education increases over this time
from approximately 38,400 to 55,700 people, a 45% increase (Figure
S1 & S6). That the overall percentage of the population with low

Fig. 2. Population projection scenario totals for coastal Georgia's six counties. Data for
2000 and 2010 are from the US Census (see Section 2.2 for details).

Fig. 3. Sub-population projection (middle scenario) results for coastal Georgia's six
counties. Data for 2000 and 2010 are from the US Census (see Section 2.2 for details).

1 Unless stated otherwise, all reported results in Section 3 are for the middle scenario
population projection.
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educational attainment decreases suggests this indicator should lead to
declines in social vulnerability for coastal Georgia. In contrast, the total
population living in poverty is projected to increase from 17.3% to
18.1%, or from approximately 87,000 to 145,000 people; a 67% in-
crease (Figure S1 & S7). This is a relatively small increase in the total
poverty rate; however, 0.8% of the projected population equals nearly
6400 more people in poverty than if the rate held constant. Thus, our
model projects higher rates of social vulnerability due to an increased
rate of those in poverty.

3.2. Future inundation exposure, aggregate social vulnerability, and risk

Our locally adjusted sea-level rise forecasts range from 0.21 to
0.64 m above the local 1992 sea level; the semi-empirically based
moderate projection is 0.36 m (Fig. 4). The area of land that would face
loss due to inundation by the year 2050 under the three sea-level rise
scenarios ranges from 82 to 285 km2, respectively. This would affect
upland areas in 83 tracts for the slow and moderate scenarios and in 84
tracts for the fast scenario. Under the all three sea-level rise scenarios,

we project a range of approximately 13,600 to 45,300 people that will
be directly exposed to inundation due to sea-level rise by mid-century
(Table 1). Of those that are exposed to inundation, approximately 5000
to 14,900 people are projected to be at risk (i.e., residing in tracts with
elevated levels of social vulnerability). This indicates that approxi-
mately 33%–37% of the directly exposed population in 2050 are pro-
jected to reside in tracts with relatively high social vulnerability and a
limited capacity to cope with the stresses of inundation from sea-level
rise. A few tracts (n = 8) are projected to have elevated levels of in-
undation exposure and social vulnerability with approximately 2300 to
10,200 people identified to be the most at risk to sea-level rise in the
year 2050 (Table 1; also see Fig. 5 for map).

Comparing 2010 and 2050 estimates of population impacted, there
is a 67% increase in the total population exposed to sea-level rise under
the fast scenario from approximately 27,200 to 45,300 people, which is
similar to previous estimates for coastal Georgia (Hauer et al., 2015).

Critically, under the fast sea-level rise scenario our results indicate a
much larger total at risk population in 2050 compared to results based
on 2010 population data; the most at risk population is projected to
substantially increase from about 1500 to 10,200 over this period, a
580% increase (Table 1). We attribute the increase of the at risk and
most at risk populations, at least partially, to the relatively higher an-
nual exponential growth rate in tract populations located along the
shore with elevated levels of social vulnerability in 2050 (1.60% mean
annual growth, n = 21) compared to the growth in all shore adjacent
tracts (1.26% mean annual growth, n = 74). In other words, in
shoreline tracts there are faster rates of population growth occurring in
tracts with relatively higher social vulnerability.

The spatio-temporal changes in the socio-demographic character-
istics driving aggregate social vulnerability are revealed by comparing
the 2050 and 2010 SoVI results. Using our modified SoVI model, we
identified 32 tracts with elevated social vulnerability in 2050 and 33
tracts in 2010 (Figure S8). We observed some overlap in the elevated
tracts from 2010 to 2050 (n = 19). The characteristics explaining the
elevated tracts stayed relatively consistent with a Class/Race (specifi-
cally Black) and Sex component loading as the most important in-
dicators for the study region in both 2010 and 2050 followed by a
Race/Ethnicity and Age component (Table 2 and Table S1). Rather than
parsing the aggregate index further, we think it is more useful to
evaluate the individual indicators of social vulnerability.

Fig. 4. Locally adjusted mean sea-level rise projection scenarios for coastal Georgia,
1992–2050. See section 2.5 for details of each scenario.

Table 1
Population exposed and the aggregate index assessment (via SoVI) for the at risk and most at risk populations. Assessments parsed by county (for 2050 projected population, middle
scenario) and each sea-level rise scenario. At risk populations are the proportion of the exposed population in tracts with elevated social vulnerability. Most at risk populations are the
proportion of the exposed population in tracts with elevated social vulnerability and elevated exposure.

Sea-Level Rise Scenario Bryan Camden Chatham Glynn Liberty McIntosh Total by year

2050 2010

Slow
0.21 m in 2050

Exposed 703 1657 5819 2853 223 2316 13,571 7649
At risk 0 188 2251 206 21 2316 4982 569
Most at risk 0 66 0 0 20 2246 2332 25

Moderate
0.37 m in 2050

Exposed 1704 2416 12,435 5484 596 3455 26,090 15,193
At risk 0 392 4624 756 59 3455 9286 1132
Most at risk 0 159 0 0 58 3260 3477 71

Fast
0.64 m in 2050

Exposed 2878 3398 23,799 9245 1081 4854 45,255 27,166
At risk 0 717 7957 1263 126 4854 14,917 2007
Most at risk 0 283 5626 0 124 4173 10,206 1520
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3.3. Future projections of social vulnerability indicators

Studies that previously applied SoVI or similar index-based ap-
proaches identified relative levels of vulnerability for the region of in-
terest (e.g., Cutter et al., 2003; Emrich & Cutter, 2011; Cutter, 2003;
Frazier, Thompson, and Dezzani 2014; Binita, Shepherd, and Gaither
2015). Such assessments problematically assume, however, that the
multi-dimensionality and heterogeneity of social vulnerability can be

captured in a single aggregate index (Rufat 2013). While composite
results are useful for broad scale hazard mitigation planning by identi-
fying relative levels of social vulnerability for the study region, their
usability is limited due to challenges associated with interpretability of
the results (Lemos, Kirchhoff, and Ramprasad 2012). Aggregated results
are challenging to apply in practice due to obscuring the reason why a
certain area (e.g., a census tract) is identified as having a higher level of
social vulnerability. While policy-makers may prefer an aggregated
index, we contend that its usefulness for planning targeted mitigation of
socially vulnerable sub-populations is limited (see Rufat 2013 for more
discussion on this topic).

To improve interpretation of our aggregated SoVI results, we report
the relative importance for each indicator used in our model (Fig. 6).
Whereas Table 2 suggests that the variable Black is important for ex-
plaining social vulnerability across the region, a map panel of relative
importance of individual indicators allows identifying the spatial
variability of the most important indicators by census tract. The map
panel also shows that the explanation for the elevated levels of ag-
gregate social vulnerability in tracts changes spatially between 2010
(Figure S9 and Table S1) and 2050. The reason that the tract in Liberty
County scored highly in the aggregate index model in 2010 (indicated
with an asterisk at its center in Figure S8a), for example, was primarily

Fig. 5. Coastal Georgia's risk to sea-level rise in the year 2050 under the fast sea-level rise scenario and middle population projection scenario. We used a bivariate plot to map the three-
tiered classification schemes for both exposure to sea-level rise inundation (blue shades along y-axis) and social vulnerability (red shades along x-axis). In the plot, relative level of risk
increases in the “northeast” direction. The tracts colored dark brown have elevated levels of inundation exposure and social vulnerability.(For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)

Table 2
SoVI results including principal components, variance explained, and dominant variable
loadings for projected social vulnerability in the year 2050.

Component Score
Adjustment

Component
Name

Variance
Explained

Dominant
Variables

Component
Loading

1 + Class/Race
& Sex

38.0% Poverty 1.096
Women 0.952
Black 0.786

2 || Age &
Ethnicity

15.3% Elderly/
Youth

0.787

Hispanic/
Latinx

−0.689
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due to a combination of moderately elevated levels of women, people in
poverty, and people with low educational attainment (Figure S9). In
this tract, by 2050 age dependency becomes a more important factor
while poverty becomes less important (Fig. 6). Another example is in
the Brunswick urban area, which shows two tracts with high social
vulnerability in 2050 (Figure S4b) due to their relatively large His-
panic/Latinx populations and populations in poverty (Fig. 6).

Without showing the map panel, the aggregate social vulnerability
results (Figure S8b) would suggest that each tract with elevated social
vulnerability across the region would need equally targeted mitigation
for all of the characteristics in Table 2, which is not the case (see Fig. 6).
We contend that aggregate-based indices are more usable if the un-
derlying spatial variability in indicators driving the regional vulner-
ability is shown to planners and others working to mitigate uneven
social vulnerability at the local scale. The planning actions needed to
mitigate vulnerability for an elderly sub-population, for example, will
often not be the same set of actions needed for a population in poverty
and/or with low education. We now take a step even further away from
the aggregate approach and evaluate the at risk populations for each
vulnerable sub-population.

Our results show an increase in the absolute number of people at
risk for all sub-populations under all sea-level rise scenarios and all but
the lowest population projection scenario (Fig. 7; see Figures S10 & S11
for projection estimates of at risk populations due to moderate and slow
sea-level rise scenarios, respectively). As the largest sub-population
assessed, women are unsurprisingly projected to have the largest in-
crease in exposure. For example, for the middle population projection
and fast sea-level rise scenario, women are projected to increase from
approximately 14,000 to 24,000 exposed and the Hispanic/Latinx sub-
population from approximately 1500 to 4600 between 2010 and 2050.
Relatedly, the Hispanic/Latinx sub-population had the largest percent
increase from 4.9% to 6.1% between 2010 and 2050 (Fig. 8). Other-
wise, our results indicate that most sub-populations will have limited
proportional increases (i.e., ∼0.5% or less) in their risk to inundation
from sea-level rise under the fast scenario (see Figures S12 & S13 for the
moderate and slow sea-level rise scenarios).

Our findings suggest that while coastal Georgia will experience an

absolute increase in the exposure of the total population and the risk for
all vulnerable sub-populations under all sea-level rise scenarios, the
region will see limited change in the relative proportion of each sub-
population at risk (except for the rapidly growing Hispanic/Latinx sub-
population). One of the main messages from this key finding is relevant
for interpreting previous and future studies quantifying social vulner-
ability of populations in coastal regions when using current population
counts. For those coastal areas experiencing rapid growth (or declines)
in more socially vulnerable sub-populations, estimates are likely to
underestimate (or overestimate) the proportion of that group that will
be impacted by inundation due to future sea-level rise. Based on the
large historical growth for coastal populations in the United States
(Crossett et al., 2013), and the estimated future population growth
expected near the shoreline (Hauer et al., 2016), we believe that future
studies that estimate socially vulnerable populations in relation to sea-

Fig. 6. Year 2050 sub-populations. This map panel shows the re-
lative importance over space for sub-populations typically asso-
ciated with increased levels of social vulnerability. The map cate-
gories are based on standard deviations (SD) from the regional
mean for each sub-population projection (middle scenario).

Fig. 7. Absolute change in total and vulnerable sub-populations (including white sub-
population) to inundation exposure under the fast sea-level rise scenario by 2050.
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level rise should account for this phenomenon to improve their accu-
racy and relevance for long-term adaptation planning.

3.4. Comparisons and limitations

Based on our middle population projection scenario, our findings
indicate that coastal Georgia's future population at risk to sea-level rise
of 0.64 m by 2050 of 14,900 people is projected to be nearly triple one
previous estimate of 5000 based on 2010 population data (Strauss et al.,
2014). We acknowledge that our inundation model did not explicitly
take into account human-made barriers such as levees that the previous
study included (Strauss et al., 2014). We believe, however, that inclu-
sion of levees and seawalls would make a fractional improvement over
the LiDAR-based elevation data. Further, we contend that these future
populations would still be living below mean sea level, and as a result
would be more at risk to the effects of sea-level rise including storm
surge that may override the engineering solutions already in place (e.g.,
as with Hurricane Katrina; Leavitt & Kiefer, 2006), or even innovative
solutions of the future. Moreover, ours is a more conservative estimate,
assessing the population below 0.64 m compared with the previous
study's use of 0.9 m. This explains why our 2010 estimate of 2010 is
lower than the previous study's estimate, at least partially.

Our findings match reasonably well with other studies for this re-
gion. For example, using a different methodology Hauer et al. (2015)
reported similar magnitudes for the total population projected to be
exposed to inundation due to sea-level rise by mid-century. Their pro-
jected mean estimates ranged from around 7300 to 41,400 people
compared to our middle scenario estimates of 13,600 to 45,300
(Table 1). The differences are likely related to our study using a dif-
ferent population projection method as well as different curves for sea-
level rise. We applied locally-adjusted upper and lower bounds fol-
lowing the quadratic equation reported in Parris et al. (2012), which
forecasts lower rates of rise by 2050 than the curves used by Hauer
et al. (2015; see Clough, Park, and Fuller 2010). Hauer et al.’s (2015)
higher curve would suggest that their estimate should be higher than
our estimate. We used a different population projection methodology
than Hauer et al. (2015)—the Hamilton-Perry method—which is known
to have an upward bias for areas undergoing rapid population growth
(Swanson et al., 2010). That our estimates for the total population ex-
posed are within a reasonably close range of Hauer et al.’s (2015)
suggests that our approach aligns well with at least one independent
projection for this region.

There are a few limitations to our approach worth acknowledging.

First, we did not apply tract-specific limitations on growth, which
would take into consideration “build-out” scenarios. We believe that
our upper limits on global tract level growth controlled for this rea-
sonably well. Under our highest population projection scenario, for
example, the most densely populated tract (located in the city of
Savannah) increased from approximately 3000 to 8000 people per
square kilometer between 2010 and 2050. This is well within the fea-
sible population density for an urban tract (Holt, Lo, and Hodler 2004).
Second, we did not account for the possibility of technological in-
novations in coastal adaptation—including coastal emigration—that
could lower the exposure of future populations, as this was beyond the
scope of this project (more below). Racial and ethnic change are cap-
tured in our cohort change ratio, yet we held the structure of poverty
constant (based on 2010) across time while the population changed and
used constant enrollment rates for low education, which assumes
stalled growth in educational attainment. Third, our model assumes
that each specific sub-population's 2000 to 2010 CCR will stay steady
over a 40-year window.

A fourth limitation is that our approach does not incorporate the
effect of amenity migration or gentrification on a population's socio-
economic structure (Hwang and Sampson 2014). CCRs implicitly ac-
count for both migration and mortality dynamics within a single age
group's CCR. There still remains the possibility that sea-level rise will
dramatically alter future migration patterns (Hauer 2017); however,
our projections do not account for possible changes in migration pat-
terns. We consider our use of various CCR scenarios as implicitly cap-
turing these potential changes in total population migration patterns. It
should be noted that migration data is rarely published at sub-county
scales, potentially hampering future empirical migration scenarios at
these scales. The use of CCRs for sub-county population projections are
within acceptable projection approaches (see Baker et al., 2017). We do
not account for all possible mechanisms that would lead to changes in
specific group's CCRs (like economic opportunity, real estate market
impacts, gentrification, etc.), but we do account for upper and lower
bounds in our projection approach. Future studies that took more
specific scenario building into consideration could more explicitly ac-
count for these dynamics and would be an improvement upon our ap-
proach.

Finally, we did not model a “full” spectrum of vulnerability in-
dicators, as is typically done with the SoVI model using observed census
data (Cutter & Morath, 2014). We recognize that this limits our ag-
gregate model's ability to capture the multi-dimensional nature of
vulnerability as well as how different indicators have interactive effects
that further exacerbate a group's vulnerability. For example, being an
elderly white woman with low educational attainment would likely
result in a greater vulnerability to sea-level rise than being elderly, but
with a college degree and significant income or savings. Whereas the
latter would have the capacity to move in the face of rising seas, the
former would be limited in their ability to generate the resources
needed to relocate. Moreover, we do not account for factors such as
female head of household, as this would likely parse our data to the
degree that nearly all of our CCRs would run towards zero and lead
explosive growth rates by creating small denominators. We can imagine
future work that takes our approach of temporally matching future
populations with future environments and adds future economies to the
creation of scenarios, much like the Shared Socioeconomic Pathways
approaches recently developed for the Intergovernmental Panel on
Climate Change (e.g., Samir and Lutz 2017; Lutz and Muttarak 2017).
How such scenarios are downscaled to sub-county geographies, how-
ever, remains a challenge for projecting the social vulnerability of fu-
ture populations.

4. Conclusion

We applied a theory of socio-demographic change, demographic
metabolism (Lutz, 2013), to project social vulnerability and improve a

Fig. 8. Percent change in total and vulnerable sub-populations at risk (including white
sub-population) to inundation exposure under the fast sea-level rise scenario by 2050.
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sea-level rise risk assessment of coastal Georgia. We projected coastal
Georgia's population to become majority non-white with higher rates of
poverty and lower rates of low educational attainment by the year
2050. Our findings show that estimating the impacts on current socially
vulnerable populations, as either aggregate indices or vulnerable sub-
populations, leads to underestimating the absolute magnitude (and in
many cases the proportion) of socially vulnerable populations of the
future that will experience inundation from future sea-level rise under
all the but the lowest population scenario. Importantly, our findings
demonstrate how studies that assess social vulnerability based on cur-
rent population counts are likely underestimating not only the absolute
magnitude of sub-populations at risk, but also the proportional risk of
sub-populations experiencing rapid growth in coastal regions.

Our temporal alignment of the social vulnerability of future popu-
lations with inundation exposure contributes knowledge toward “use-
inspired research on vulnerability and adaptation” (Moser 2010, p.
467) with the goal of generating policy solutions for mitigating vul-
nerability to rising seas. We believe that our approach can empower
local and state governments to develop more appropriately oriented
vulnerability mitigation plans, targeting those with low educational
attainment in specific areas, for example, while specifying needs for
those in poverty in others. We imagine that our methodological ap-
proach of projecting future socially vulnerable populations and their
relative risk could improve upon previous investigations (e.g., see
Frazier et al., 2010 for storm surge; see Grineski et al., 2012 for heat-
waves) in future climate-related hazard and climate justice studies.

Despite the limitations, we believe the approach we have presented
answers a pressing need for more climate models that integrate climate
change scenarios with scenarios of future social heterogeneity by ac-
counting for poverty and other factors driving social inequality (Rao,
van Ruijven, Bosetti, & Riahi, 2017). Moreover, we believe that our
approach for doing such integration at the sub-county scale—a more
manageable scale for the city and county planners who will be coping
with these changes—is an innovation on the national and global scale
integrated assessments that are the current focus of integrated mod-
eling.
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